The NTRU encryption scheme, and ideal lattices

Damien Stehlé

Based on joint work with Ron Steinfeld

Šibenik, June 2015

perso.ens-lyon.fr/damien.stehle/NTRU.html

The NTRU encryption scheme

NTRUEncrypt: A public-key encryption scheme.

- 1996: Proposed by Hoffstein, Pipher & Silverman.
- 1997: Lattice attacks by Coppersmith & Shamir.
- 1998: Revised by Hoffstein et al.

In the last 20 years:

- Several limited improvements to the lattice attacks.
- Attacks for isolated sets of parameters.
- But the design has proved very robust.

The NTRU encryption scheme

NTRUEncrypt: A public-key encryption scheme.

- 1996: Proposed by Hoffstein, Pipher & Silverman.
- 1997: Lattice attacks by Coppersmith & Shamir.
- 1998: Revised by Hoffstein et al.

In the last 20 years:

- Several limited improvements to the lattice attacks.
- Attacks for isolated sets of parameters.
- But the design has proved very robust.

Why studying NTRUEncrypt?

NTRUEncrypt is a practical scheme that seems secure.

- Standardized: IEEE P1363.
- Commercialized: Security Innovation.
- Super-fast:
 - Encryption: a bit faster
 - Decryption \sim 100 times faster
 - Asymptotically: $O(\lambda)$ versus $O(\lambda^6)$, for security 2^{λ}
- Interesting security features:
 - No integer factoring nor discrete logs
 - Seems to resist practical attacks
 - Seems to resist quantum attacks

Why studying NTRUEncrypt?

NTRUEncrypt is a practical scheme that seems secure.

- Standardized: IEEE P1363.
- Commercialized: Security Innovation.
- Super-fast:
 - Encryption: a bit faster
 - Decryption $\sim 100\, {\rm times}$ faster
 - Asymptotically: $\widetilde{O}(\lambda)$ versus $\widetilde{O}(\lambda^6)$, for security 2^{λ}
- Interesting security features:
 - No integer factoring nor discrete logs
 - Seems to resist practical attacks
 - Seems to resist quantum attacks

Why studying NTRUEncrypt?

NTRUEncrypt is a practical scheme that seems secure.

- Standardized: IEEE P1363.
- Commercialized: Security Innovation.
- Super-fast:
 - Encryption: a bit faster
 - Decryption ~ 100 times faster
 - Asymptotically: $\widetilde{O}(\lambda)$ versus $\widetilde{O}(\lambda^6)$, for security 2^{λ}
- Interesting security features:
 - No integer factoring nor discrete logs
 - Seems to resist practical attacks
 - Seems to resist quantum attacks

And NTRUSign?

NTRUSign is a digital signature counterpart of NTRUEncrypt.

- 2001: First proposal, called NSS [HoPiSi01].
- 2001: Cryptanalysis, by Gentry, Jonsson, Stern and Szydlo.
- 2001: First repair.
- 2002: Re-broken, by Gentry and Szydlo.
- Since then: many breaks and repairs.
- Standardized and commercialized.
- Super-fast, before the Nguyen-Regev attack (2009).
- timay be thwarted, but with big performance impact.

NTRUSign is a digital signature counterpart of NTRUEncrypt.

- 2001: First proposal, called NSS [HoPiSi01].
- 2001: Cryptanalysis, by Gentry, Jonsson, Stern and Szydlo.
- 2001: First repair.
- 2002: Re-broken, by Gentry and Szydlo.
- Since then: many breaks and repairs.
- Standardized and commercialized.
- Super-fast, before the Nguyen-Regeviattack (2009).
- It may be thwarted, but with big performance impact.

And NTRUSign?

NTRUSign is a digital signature counterpart of NTRUEncrypt.

- 2001: First proposal, called NSS [HoPiSi01].
- 2001: Cryptanalysis, by Gentry, Jonsson, Stern and Szydlo.
- 2001: First repair.
- 2002: Re-broken, by Gentry and Szydlo.
- Since then: many breaks and repairs.
- Standardized and commercialized.
- Super-fast, before the Nguyen-Regev attack (2009).
- It may be thwarted, but with big performance impact.

NTRUSign is a digital signature counterpart of NTRUEncrypt.

- 2001: First proposal, called NSS [HoPiSi01].
- 2001: Cryptanalysis, by Gentry, Jonsson, Stern and Szydlo.
- 2001: First repair.
- 2002: Re-broken, by Gentry and Szydlo.
- Since then: many breaks and repairs.
- Standardized and commercialized.
- Super-fast, before the Nguyen-Regev attack (2009).
- It may be thwarted, but with big performance impact.

Fixed NTRUSign not competitive, e.g. compared to BLISS.

Damien Stehlé

The NTRU encryption scheme

And NTRUSign?

NTRUSign is a digital signature counterpart of NTRUEncrypt.

- 2001: First proposal, called NSS [HoPiSi01].
- 2001: Cryptanalysis, by Gentry, Jonsson, Stern and Szydlo.
- 2001: First repair.
- 2002: Re-broken, by Gentry and Szydlo.
- Since then: many breaks and repairs.
- Standardized and commercialized.

Damien Stehlé

The NTRU encryption scheme

And NTRUSign?

NTRUSign is a digital signature counterpart of NTRUEncrypt.

- 2001: First proposal, called NSS [HoPiSi01].
- 2001: Cryptanalysis, by Gentry, Jonsson, Stern and Szydlo.
- 2001: First repair.
- 2002: Re-broken, by Gentry and Szydlo.
- Since then: many breaks and repairs.
- Standardized and commercialized.
- Super-fast, before the Nguyen-Regev attack (2009).
- It may be thwarted, but with big performance impact.

Fixed NTRUSign not competitive, e.g. compared to BLISS.

Outline of the talk

- 1- Regular NTRUEncrypt
- 2- Attacks on NTRUEncrypt
- 3- The Ideal-SVP and Ring-LWE problems
- 4- A provably secure NTRUEncrypt

Polynomial Rings: Generalizing \mathbb{Z}

Take $\Phi \in \mathbb{Z}[x]$ monic of degree *n*.

$$R^{\Phi} := \Big[\mathbb{Z}[x]/(\Phi), +, \times\Big].$$

Some interesting Φ 's:

• $\Phi = x^n - 1 \rightarrow R^-$, $\Phi = x^n + 1 \rightarrow R^+$.

 For n a power of 2, the ring R⁺ is isomorphic to the ring of integers of K = Q[e^{iπ/n}]:

$$\begin{array}{rcl} \mathcal{K} &\simeq & \mathbb{Q}[x]/(x''+1) \\ \mathcal{O}_{\mathcal{K}} &\simeq & \mathbb{Z}[x]/(x''+1). \end{array}$$

 \Rightarrow Rich algebraic structure (great for design and proofs).

Polynomial Rings: Generalizing $\mathbb Z$

Take $\Phi \in \mathbb{Z}[x]$ monic of degree *n*.

1

$$\mathbb{R}^{\Phi} := \Big[\mathbb{Z}[x]/(\Phi), +, \times\Big].$$

Some interesting Φ 's:

•
$$\Phi = x^n - 1 \rightarrow R^-$$
, $\Phi = x^n + 1 \rightarrow R^+$.

 For n a power of 2, the ring R⁺ is isomorphic to the ring of integers of K = Q[e^{iπ/n}]:

$$\begin{array}{rcl} \mathcal{K} &\simeq & \mathbb{Q}[x]/(x^n+1) \\ \mathcal{O}_{\mathcal{K}} &\simeq & \mathbb{Z}[x]/(x^n+1). \end{array}$$

 \Rightarrow Rich algebraic structure (great for design and proofs).

Polynomial Rings: Generalizing $\mathbb Z$

Take $\Phi \in \mathbb{Z}[x]$ monic of degree *n*.

$$R^{\Phi} := \Big[\mathbb{Z}[x]/(\Phi), +, \times\Big].$$

Some interesting Φ 's:

•
$$\Phi = x^n - 1 \rightarrow R^-$$
, $\Phi = x^n + 1 \rightarrow R^+$.

 For n a power of 2, the ring R⁺ is isomorphic to the ring of integers of K = Q[e^{iπ/n}]:

$$egin{array}{rcl} \mathcal{K} &\simeq & \mathbb{Q}[x]/(x^n+1) \ \mathcal{O}_{\mathcal{K}} &\simeq & \mathbb{Z}[x]/(x^n+1). \end{array}$$

 \Rightarrow Rich algebraic structure (great for design and proofs).

Damien Stehlé

Polynomial Rings: Generalizing $\mathbb{Z}/q\mathbb{Z}$

Let $q \geq 2$ and $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$.

$$R^{\Phi}_q := \left[\mathbb{Z}_q[x]/(\Phi), +, \times\right].$$

• Arithmetic in R_q^{Φ} costs $\widetilde{O}(n \log q)$.

• R_q^+ is isomorphic to $\mathcal{O}_K/(q)$.

The key to decryption correctness

If $f \in R^{\Phi}$ is known to have coefficients in (-q/2, q/2), then $f \mod q$ uniquely determines f.

Polynomial Rings: Generalizing $\mathbb{Z}/q\mathbb{Z}$

Let $q \geq 2$ and $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$.

$$R_q^{\Phi} := \left[\mathbb{Z}_q[x]/(\Phi), +, \times\right].$$

- Arithmetic in R_q^{Φ} costs $\widetilde{O}(n \log q)$.
- R_q^+ is isomorphic to $\mathcal{O}_K/(q)$.

The key to decryption correctness

If $f \in R^{\Phi}$ is known to have coefficients in (-q/2, q/2), then

f mod q uniquely determines f.

Polynomial Rings: Generalizing $\mathbb{Z}/q\mathbb{Z}$

Let $q \geq 2$ and $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$.

$$R^{\Phi}_q := \left[\mathbb{Z}_q[x]/(\Phi), +, \times\right].$$

- Arithmetic in R_q^{Φ} costs $\widetilde{O}(n \log q)$.
- R_q^+ is isomorphic to $\mathcal{O}_K/(q)$.

The key to decryption correctness

If $f \in R^{\Phi}$ is known to have coefficients in (-q/2, q/2), then

 $f \mod q$ uniquely determines f.

Parameters: n, q a power of 2 (e.g. (n, q) = (503, 256)).

• Secret key sk: $f, g \in R^-$ with:

- f is invertible mod q and mod 3
- The coeffs of f and g are in $\{-1, 0, 1\}$
- Public key pk: $h = g/f \mod q$

Security intuition

Parameters: n, q a power of 2 (e.g. (n, q) = (503, 256)).

- Secret key sk: $f, g \in R^-$ with:
 - f is invertible mod q and mod 3
 - The coeffs of f and g are in $\{-1, 0, 1\}$

• Public key pk: $h = g/f \mod q$

Security intuition

Parameters: n, q a power of 2 (e.g. (n, q) = (503, 256)).

- Secret key sk: $f, g \in R^-$ with:
 - f is invertible mod q and mod 3
 - The coeffs of f and g are in $\{-1, 0, 1\}$
- Public key pk: $h = g/f \mod q$

Security intuition

Parameters: n, q a power of 2 (e.g. (n, q) = (503, 256)).

- Secret key sk: $f, g \in R^-$ with:
 - f is invertible mod q and mod 3
 - The coeffs of f and g are in $\{-1, 0, 1\}$

• Public key
$$pk$$
: $h = g/f \mod q$

Security intuition

- sk: $f,g \in R^-$ small with f invertible mod q and mod 3
- $pk: h = g/f \mod q$

- sk: $f,g \in R^-$ small with f invertible mod q and mod 3
- $pk: h = g/f \mod q$

Encryption of $M \in R$ with coeffs in $\{0, 1\}$:

- Sample $s \in R_q^-$ with coeffs in $\{-1, 0, 1\}$
- Send $C := 3hs + M \mod q$

- sk: $f,g \in R^-$ small with f invertible mod q and mod 3
- $pk: h = g/f \mod q$

Encryption of $M \in R$ with coeffs in $\{0, 1\}$:

- Sample $s \in R_q^-$ with coeffs in $\{-1,0,1\}$
- Send $C := 3hs + M \mod q$

Decryption of $C \in R_q^-$:

- $f \times C = 3gs + fM \mod q$
- Smallness \Rightarrow equality holds over R^-
- $(f \times C \mod q) \mod 3 = fM \mod 3$
- Multiply by the inverse of f mod 3

Security intuition

The mask 3hs hides the plaintext M in the ciphertext C

Damien Stehlé

- sk: $f, g \in R^-$ small with f invertible mod q and mod 3
- $pk: h = g/f \mod q$

Encryption of $M \in R$ with coeffs in $\{0, 1\}$:

- Sample $s \in R_q^-$ with coeffs in $\{-1,0,1\}$
- Send $C := 3hs + M \mod q$

Decryption of $C \in R_a^-$:

- $f \times C = 3gs + fM \mod q$
- Smallness \Rightarrow equality holds over R^-
- $(f \times C \mod q) \mod 3 = fM \mod 3$
- Multiply by the inverse of f mod 3

Security intuition

The mask 3hs hides the plaintext M in the ciphertext C.

Quite a few implementation hacks:

- How many 0's in $f, g, s \rightarrow d_f, d_g, d_s$.
- If f = 1 + 3f' for a small f', then the final multiplication by the inverse of $f \mod 3$ is for free.
- Replacing "3" by "x + 2" increases performance.
- More hacks for NAFP (variant meant to be IND-CCA in the Random Oracle Model).

Outline of the talk

- 1- Regular NTRUEncrypt
- 2- Attacks on NTRUEncrypt
- 3- The Ideal-SVP and Ring-LWE problems
- 4- A provably secure NTRUEncrypt

The key-pair (h, (f, g)) of NTRUEncrypt satisfies:

$$\left[\begin{array}{cc}1&0\\h&q\end{array}\right]\cdot\left[\begin{array}{c}f\\-\end{array}\right] = \left[\begin{array}{c}f\\f\cdot h \mod q\end{array}\right].$$

Secret key
$$\begin{bmatrix} f \\ g \end{bmatrix}$$
 is a short vector in the image of $\begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix}$.

We look at *R*-multiples of the columns, and try to find a short combination...

The key-pair (h, (f, g)) of NTRUEncrypt satisfies:

$$\left[\begin{array}{cc}1&0\\h&q\end{array}\right]\cdot\left[\begin{array}{c}f\\-\end{array}\right] = \left[\begin{array}{c}f\\f\cdot h \mod q\end{array}\right].$$

Secret key
$$\begin{bmatrix} f \\ g \end{bmatrix}$$
 is a short vector in the image of $\begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix}$.

We look at *R*-multiples of the columns, and try to find a short combination...

The key-pair (h, (f, g)) of NTRUEncrypt satisfies:

$$\left[\begin{array}{cc}1&0\\h&q\end{array}\right]\cdot\left[\begin{array}{c}f\\-\end{array}\right] = \left[\begin{array}{c}f\\f\cdot h \mod q\end{array}\right].$$

Secret key
$$\begin{bmatrix} f \\ g \end{bmatrix}$$
 is a short vector in the image of $\begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix}$.

We look at R-multiples of the columns, and try to find a short combination...

Secret key $\begin{bmatrix} f \\ g \end{bmatrix}$ is a short vector in the image of $\begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix}$.

Let's identify polynomials to vectors via their coefficients:

$$\begin{array}{rccc} R^{\Phi} & \to & \mathbb{Z}^n \\ \sum_{i < n} f_i x^i & \mapsto & (f_0, \dots, f_{n-1})^i \end{array}$$

Let L be the image of

$$\begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix} \cdot R^2$$

- L is a lattice of dimension 2n.
- $(f,g)^T$ is a short vector in L.
- If they are chosen binary and sparse, then *L* contains exceptionally short vectors.
- \Rightarrow Lattice reduction gives a key recovery attack.

Secret key $\begin{bmatrix} f \\ g \end{bmatrix}$ is a short vector in the image of $\begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix}$.

Let's identify polynomials to vectors via their coefficients:

$$\begin{array}{ccc} R^{\Phi} & \to & \mathbb{Z}^n \\ \sum_{i < n} f_i x^i & \mapsto & (f_0, \dots, f_{n-1})^t \end{array}$$

Let *L* be the image of

$$\begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix} \cdot R^2$$

- L is a lattice of dimension 2n.
- $(f,g)^T$ is a short vector in L.
- If they are chosen binary and sparse, then *L* contains exceptionally short vectors.
- \Rightarrow Lattice reduction gives a key recovery attack.

On the NTRUEncrypt ciphertext

We have: $C = 3h \cdot s + M \mod q$, for some small unknown s. We can write:

$$\left[\begin{array}{cc} 1 & 0 \\ h & q \end{array}\right] \cdot \left[\begin{array}{c} 3s \\ -\end{array}\right] + \left[\begin{array}{c} -3s \\ M \end{array}\right] = \left[\begin{array}{c} 0 \\ C \end{array}\right].$$

The vector (-3s, M)^T has small coefficients.

 By mapping to the integers, we get an instance of the Bounded Distance Decoding problem: given a vector close to L, recover the closest lattice point

• Here
$$L = \begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix} \cdot R^2$$
, and input vector is given by C.

 \Rightarrow Lattice reduction gives a message recovery attack.

On the NTRUEncrypt ciphertext

We have: $C = 3h \cdot s + M \mod q$, for some small unknown s. We can write:

$$\left[\begin{array}{cc}1&0\\h&q\end{array}\right]\cdot\left[\begin{array}{c}3s\\-\end{array}\right]+\left[\begin{array}{c}-3s\\M\end{array}\right] = \left[\begin{array}{c}0\\C\end{array}\right].$$

• The vector $(-3s, M)^T$ has small coefficients.

 By mapping to the integers, we get an instance of the Bounded Distance Decoding problem: given a vector close to L, recover the closest lattice point.

• Here
$$L = \begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix} \cdot R^2$$
, and input vector is given by C.

 \Rightarrow Lattice reduction gives a message recovery attack.
Parameters may be set to thwart (improved versions of) these lattice reduction attacks.

But there are easy poly-time chosen plaintext attacks.

 $C = 3h \cdot s + M \mod (q, x^n - 1)$, for some small s. We have:

Parameters may be set to thwart (improved versions of) these lattice reduction attacks.

But there are easy poly-time chosen plaintext attacks.

 $C = 3h \cdot s + M \mod (q, x^n - 1)$, for some small s. We have:

- Note that $C(1) = 3h(1) \cdot s(1) + M(1) \mod q$ [1-dim NTRU!]

Parameters may be set to thwart (improved versions of) these lattice reduction attacks.

But there are easy poly-time chosen plaintext attacks.

We have: $C = 3h \cdot s + M \mod (q, x^n - 1)$, for some small s.

- Note that $C(1) = 3h(1) \cdot s(1) + M(1) \mod q$ [1-dim NTRU!]
- Find $f_1, g_1 \in \mathbb{Z}$ of magnitude $\approx \sqrt{q}$ s.t. $h(1) = f_1/g_1 \mod q$.
- Use 1-dim decryption, to recover $M(1) \mod 3$.

The factorisation of Φ is used to map the *n*-dimensional ring to a 1-dimensional ring.

Parameters may be set to thwart (improved versions of) these lattice reduction attacks.

But there are easy poly-time chosen plaintext attacks.

We have: $C = 3h \cdot s + M \mod (q, x^n - 1)$, for some small s.

- Note that $C(1) = 3h(1) \cdot s(1) + M(1) \mod q$ [1-dim NTRU!]
- Find $f_1, g_1 \in \mathbb{Z}$ of magnitude $\approx \sqrt{q}$ s.t. $h(1) = f_1/g_1 \mod q$.
- Use 1-dim decryption, to recover M(1) mod 3.

The factorisation of Φ is used to map the *n*-dimensional ring to a 1-dimensional ring.

Ring-LWE

Outline of the talk

- 1- Regular NTRUEncrypt
- 2- Attacks on NTRUEncrypt
- 3- The Ideal-SVP and Ring-LWE problems
- 4- A provably secure NTRUEncrypt

From now on, we use

$$R = \mathbb{Z}[x]/(x^n+1),$$

with *n* a power of 2.

 $\overline{\mathcal{P}oly}(n)$ -Ideal-SVP

• $I \subseteq R$ is an ideal if:

$\forall a, b \in I, \forall r \in R : a + b \cdot r \in I.$

• We identify polynomials to vectors via their coefficients:

$$\begin{array}{rccc} R & \to & \mathbb{Z}^n \\ \sum_{i < n} f_i x^i & \mapsto & (f_0, \dots, f_{n-1})^t \end{array}$$

• An ideal *I* is mapped to an integer lattice.

Poly(n)-Ideal-SVP: *Poly(n)*-SVP restricted to ideal lattices.

• $I \subseteq R$ is an ideal if:

$$\forall a, b \in I, \forall r \in R : a + b \cdot r \in I.$$

• We identify polynomials to vectors via their coefficients:

$$\begin{array}{rccc} R & \to & \mathbb{Z}^n \\ \sum_{i < n} f_i x^i & \mapsto & (f_0, \dots, f_{n-1})^t \end{array}$$

• An ideal *I* is mapped to an integer lattice.

 $\mathcal{P}oly(n)$ -Ideal-SVP: $\mathcal{P}oly(n)$ -SVP restricted to ideal lattices.

• $I \subseteq R$ is an ideal if:

$$\forall a, b \in I, \forall r \in R : a + b \cdot r \in I.$$

• We identify polynomials to vectors via their coefficients:

$$\begin{array}{ccc} R & \to & \mathbb{Z}^n \\ \sum_{i < n} f_i x^i & \mapsto & (f_0, \dots, f_{n-1})^t \end{array}$$

• An ideal I is mapped to an integer lattice.

 $\mathcal{P}oly(n)$ -Ideal-SVP: $\mathcal{P}oly(n)$ -SVP restricted to ideal lattices.

• $I \subseteq R$ is an ideal if:

$$\forall a, b \in I, \forall r \in R : a + b \cdot r \in I.$$

• We identify polynomials to vectors via their coefficients:

$$\begin{array}{rccc} R & \to & \mathbb{Z}^n \\ \sum_{i < n} f_i x^i & \mapsto & (f_0, \dots, f_{n-1})^t \end{array}$$

• An ideal I is mapped to an integer lattice.

 $\mathcal{P}oly(n)$ -Ideal-SVP: $\mathcal{P}oly(n)$ -SVP restricted to ideal lattices.

Are these easier lattices?

First weakness.

- If *I* is an ideal lattice, we know a good approximation of the norm of any shortest non-zero vector.
- For $\Phi = x^n + 1$, we have a \sqrt{n} -factor approximation.
- Why? If s is a shortest non-zero vector of I, then

 $s \cdot R \subseteq I$ is a full-dimensional sublattice .

Second weakness: [Cramer-Ducas-Peikert-Regev'15].

- If *I* is of the form $I = s \cdot R$ where *s* is quite short, then one can recover *s* in sub-exponential time in $n = \dim I$.
- Quantumly, this can be done in polynomial time.
- Limited to very special ideal lattices.

$\mathcal{P}oly(n)$ -Ideal-SVP is <u>believed</u> to be as hard as $\mathcal{P}oly(n)$ -SVP.

Are these easier lattices?

First weakness.

- If *I* is an ideal lattice, we know a good approximation of the norm of any shortest non-zero vector.
- For $\Phi = x^n + 1$, we have a \sqrt{n} -factor approximation.
- Why? If s is a shortest non-zero vector of I, then

 $s \cdot R \subseteq I$ is a full-dimensional sublattice .

Second weakness: [Cramer-Ducas-Peikert-Regev'15].

- If *I* is of the form $I = s \cdot R$ where *s* is quite short, then one can recover *s* in sub-exponential time in $n = \dim I$.
- Quantumly, this can be done in polynomial time.
- Limited to very special ideal lattices.

 $\mathcal{P}oly(n)$ -Ideal-SVP is <u>believed</u> to be as hard as $\mathcal{P}oly(n)$ -SVP.

Are these easier lattices?

First weakness.

- If *I* is an ideal lattice, we know a good approximation of the norm of any shortest non-zero vector.
- For $\Phi = x^n + 1$, we have a \sqrt{n} -factor approximation.
- Why? If s is a shortest non-zero vector of I, then

 $s \cdot R \subseteq I$ is a full-dimensional sublattice .

Second weakness: [Cramer-Ducas-Peikert-Regev'15].

- If *I* is of the form $I = s \cdot R$ where *s* is quite short, then one can recover *s* in sub-exponential time in $n = \dim I$.
- Quantumly, this can be done in polynomial time.
- Limited to very special ideal lattices.

$\mathcal{P}oly(n)$ -Ideal-SVP is <u>believed</u> to be as hard as $\mathcal{P}oly(n)$ -SVP.

- The NTRU lattice $\begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix} \cdot R^2$ is... a 2-dimensional module over R.
- An ideal lattice is 1-dimensional over *R*.
- It could be that ideal lattice problems are easy to solve, but NTRU remains hard to break.

- The NTRU lattice $\begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix} \cdot R^2$ is... a 2-dimensional module over R.
- An ideal lattice is 1-dimensional over *R*.
- It could be that ideal lattice problems are easy to solve, but NTRU remains hard to break.

- The NTRU lattice $\begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix} \cdot R^2$ is... a 2-dimensional module over R.
- An ideal lattice is 1-dimensional over R.
- It could be that ideal lattice problems are easy to solve, but NTRU remains hard to break.

- The NTRU lattice $\begin{bmatrix} 1 & 0 \\ h & q \end{bmatrix} \cdot R^2$ is... a 2-dimensional module over R.
- An ideal lattice is 1-dimensional over R.
- It could be that ideal lattice problems are easy to solve, but NTRU remains hard to break.

The Ring-LWE Problem

• The error distribution ν_{α} :

- *n*-dimensional Gaussian of standard deviation $\alpha q \ll q$,
- rounded to \mathbb{Z}^n ,
- looked at as an element of R.
- \Rightarrow Element of R with small coefficients.
- The R-LWE distribution D_{lpha} :
 - Sample $a \leftrightarrow U(R_q), s \leftrightarrow \nu_{\alpha}, e \leftrightarrow \nu_{\alpha}$,
 - Return $(a, as + e) \in R_q \times R_q$.

(Simplified) R-LWE [Lyubashevsky-Peikert-Regev'11]

Distinguish between D_{α} and $U(R_q \times R_q)$.

The Ring-LWE Problem

• The error distribution ν_{α} :

- *n*-dimensional Gaussian of standard deviation $\alpha q \ll q$,
- rounded to \mathbb{Z}^n ,
- looked at as an element of R.
- \Rightarrow Element of *R* with small coefficients.
- The R-LWE distribution D_{α} :
 - Sample $a \leftarrow U(R_q), s \leftarrow \nu_{\alpha}, e \leftarrow \nu_{\alpha},$
 - Return $(a, as + e) \in R_q \times R_q$.

[Simplified] R-LWE [Lyubashevsky-Peikert-Regev'11]

Distinguish between D_{α} and $U(R_q \times R_q)$.

The Ring-LWE Problem

• The error distribution ν_{α} :

- *n*-dimensional Gaussian of standard deviation $\alpha q \ll q$,
- rounded to \mathbb{Z}^n ,
- looked at as an element of R.
- \Rightarrow Element of *R* with small coefficients.
- The R-LWE distribution D_{α} :
 - Sample $a \leftrightarrow U(R_q), s \leftrightarrow \nu_{\alpha}, e \leftrightarrow \nu_{\alpha}$,
 - Return $(a, as + e) \in R_q \times R_q$.

(Simplified) R-LWE [Lyubashevsky-Peikert-Regev'11]

Distinguish between D_{α} and $U(R_q \times R_q)$.

R-LWE is hard [Lyubashevsky-Peikert-Regev'11]

$\mathsf{R}\text{-}\mathsf{LWE}_{q,\alpha}$

Tell whether a given (a, b) is sampled from D_{α} or $U(R_q \times R_q)$.

R-LWE is no easier than $\mathcal{P}oly(n)$ -Ideal-SVP

Take $q = \mathcal{P}oly(n)$ with $q = 1 \mod 2n$, and $\alpha = q/\mathcal{P}oly(n)$. Solving R-LWE_{q, α} with non-negligible advantage is computationally infeasible, assuming the quantum hardness of $\mathcal{P}oly(n)$ -Ideal-SVP.

- The arithmetic restriction on *q* can be removed [Langlois-Stehlé'14]
- It could be that $\mathcal{P}oly(n)$ -Ideal-SVP is easy, but R-LWE remains hard to solve.

R-LWE is hard [Lyubashevsky-Peikert-Regev'11]

$\mathsf{R}\text{-}\mathsf{LWE}_{q,\alpha}$

Tell whether a given (a, b) is sampled from D_{α} or $U(R_q \times R_q)$.

R-LWE is no easier than $\mathcal{P}oly(n)$ -Ideal-SVP

Take $q = \mathcal{P}oly(n)$ with $q = 1 \mod 2n$, and $\alpha = q/\mathcal{P}oly(n)$. Solving R-LWE_{q, α} with non-negligible advantage is computationally infeasible, assuming the quantum hardness of $\mathcal{P}oly(n)$ -Ideal-SVP.

- The arithmetic restriction on *q* can be removed [Langlois-Stehlé'14]
- It could be that $\mathcal{P}oly(n)$ -Ideal-SVP is easy, but R-LWE remains hard to solve.

Outline of the talk

- 1- Regular NTRUEncrypt
- 2- Attacks on NTRUEncrypt
- 3- The Ideal-SVP and Ring-LWE problems
- 4- A provably secure NTRUEncrypt

NTRUEncrypt:

- pk: $h = g/f \in R_q^-$ with f, g small.
- Enc: $M \mapsto 3hs + M \mod q$, where s is small.
- IND-CPA: we would like (*h*, 3*hs*) to be **pseudo-random**.
- It's not! Divide RHS by h and check for smallness.

- (a, as + e) is pseudo-random when $a \leftrightarrow U(R_a^+), s, e \leftrightarrow \nu_{\alpha}$.
- Let's change rings and replace "(h, hs)" by "(h, hs + e)"!

NTRUEncrypt:

- pk: $h = g/f \in R_q^-$ with f, g small.
- Enc: $M \mapsto 3hs + M \mod q$, where s is small.
- IND-CPA: we would like (h, 3hs) to be pseudo-random.
- It's not! Divide RHS by h and check for smallness.

- (a, as + e) is pseudo-random when $a \leftrightarrow U(R_q^+), s, e \leftrightarrow \nu_{\alpha}$.
- Let's change rings and replace "(h, hs)" by "(h, hs + e)"!

NTRUEncrypt:

- pk: $h = g/f \in R_q^-$ with f, g small.
- Enc: $M \mapsto 3hs + M \mod q$, where s is small.
- IND-CPA: we would like (h, 3hs) to be pseudo-random.
- It's not! Divide RHS by h and check for smallness.

- (a, as + e) is pseudo-random when $a \leftrightarrow U(R_q^+), s, e \leftrightarrow \nu_{\alpha}$.
- Let's change rings and replace "(h, hs)" by "(h, hs + e)"!

NTRUEncrypt:

- pk: $h = g/f \in R_q^-$ with f, g small.
- Enc: $M \mapsto 3hs + M \mod q$, where s is small.
- IND-CPA: we would like (h, 3hs) to be pseudo-random.
- It's not! Divide RHS by h and check for smallness.

- (a, as + e) is pseudo-random when $a \leftrightarrow U(R_q^+), s, e \leftrightarrow \nu_{\alpha}$.
- Let's change rings and replace "(h, hs)" by "(h, hs + e)"!

The modified scheme

Parameters: *n*, *q* a power of 2, $R = R^{-}$.

Key generation:

- sk: $f, g \in R$ with:
 - f invertible mod q and 3
 - Coeffs of f and g in $\{-1,0,1\}$
- pk: $h = g/f \mod q$.

Encryption of $M \in R$ with coeffs in $\{0, 1\}$:

• $C := 3hs + M \mod q$, with coeffs of s in $\{-1, 0, 1\}$.

Decryption of $C \in R_q$:

- $f \times C \mod q = 3gs + fM$ (over R)
- $(f \times C \mod q) \mod 3 = fM \mod 3$.
- Multiply by the inverse of f mod 3.

The modified scheme

Parameters: *n* a power of 2, *q* prime, $R = R^+$.

Key generation:

- sk: $f, g \in R$ with:
 - f invertible mod q and 2
 - Coeffs of f and g of magnitude $\approx \sqrt{q}$
- pk: $h = g/f \mod q$.

Encryption of $M \in R$ with coeffs in $\{0, 1\}$:

• $C := 2(hs + e) + M \mod q$, with $s, e \leftarrow \nu_{\alpha}$.

Decryption of $C \in R_q$:

- $f \times C \mod q = 2(gs + fe) + fM$ (over R)
- $(f \times C \mod q) \mod 2 = fM \mod 2$.
- Multiply by the inverse of f mod 2.

Pseudo-randomness of
$$(h, hs + e)$$

 \downarrow
Pseudo-randomness of $(h, 2(hs + e))$
 \downarrow
M is computationally hidden in $(h, 2(hs + e) + M)$
 \downarrow
IND-CPA security of the modified scheme

There is a catch!

Relying on R-LWE requires h uniform in R_q^+ . But here h is the quotient of two small polynomials in R^+ ..

See: perso.ens-lyon.fr/damien.stehle/NTRU.html

Damien Stehlé

The NTRU encryption scheme

Pseudo-randomness of
$$(h, hs + e)$$

 $\downarrow \downarrow$
Pseudo-randomness of $(h, 2(hs + e))$
 $\downarrow \downarrow$
M is computationally hidden in $(h, 2(hs + e) + M)$
 $\downarrow \downarrow$
IND-CPA security of the modified scheme

There is a catch!

Relying on R-LWE requires h uniform in R_q^+ . But here h is the quotient of two small polynomials in R^+ ...

See: perso.ens-lyon.fr/damien.stehle/NTRU.html

Damien Stehlé

A provably secure variant of NTRUEncrypt

It is possible to modify NTRUEncrypt so that:

- Encryption/decryption of λ bits still cost $\widetilde{O}(\lambda)$,
- Any polynomial-time IND-CPA attack leads to a polynomial-time quantum algorithm for *Poly(n)*-Ideal-SVP.

What's the interest of this result?

What we prove:

- There is a variant of NTRUEncrypt that is secure under the assumption that $\mathcal{P}oly(n)$ -Ideal-SVP is hard.
- It's asymptotically as efficient as the original scheme.

What's the interest of this result?

What we prove:

- There is a variant of NTRUEncrypt that is secure under the assumption that $\mathcal{P}oly(n)$ -Ideal-SVP is hard.
- It's asymptotically as efficient as the original scheme.

It does not mean we should blindly replace NTRUEncrypt by this variant: It is much less practical!

What's the interest of this result?

What we prove:

- There is a variant of NTRUEncrypt that is secure under the assumption that $\mathcal{P}oly(n)$ -Ideal-SVP is hard.
- It's asymptotically as efficient as the original scheme.

It does not mean we should blindly replace NTRUEncrypt by this variant: It is much less practical!

What it suggests:

- The general design of NTRUEncrypt is sound.
- It hints to cheap modifications towards more security
 - Change the underlying ring.
 - Replace hs by hs + e, to thwart trivial CPA attacks.
 - Take less small coefficients for f, g, s, e.

Outline of the talk

- 1- Regular NTRUEncrypt
- 2- The Ideal-SVP and R-LWE problems
- 3- A provably secure NTRUEncrypt
- 4- On NTRUSign

- NTRUEncrypt has resisted well against years of cryptanalytic efforts.
- The design is sound: a mild modification admits a security proof under standard hardness assumptions.
- The security of NTRU is related to lattices defined from polynomial rings.
- Deep connection with algebraic number theory.

- NTRUEncrypt has resisted well against years of cryptanalytic efforts.
- The design is sound: a mild modification admits a security proof under standard hardness assumptions.
- The security of NTRU is related to lattices defined from polynomial rings.
- Deep connection with algebraic number theory.

Open problems

Underlying hardness assumptions.

- Is $\mathcal{P}oly(n)$ -Ideal-SVP really so hard?
- Are R-LWE and NTRU security equivalent to *Poly(n)*-Ideal-SVP?

What about practice?

- Which modifications to achieve good efficiency and security?
- What are the limits of the best known practical attacks?
- How to set parameters?

Design

- Can we design more advanded primitives, from NTRU?
- [Lopez-Alt, Tromer, Vaikuntanathan'12] Application to fully homomorphic encryption and multi-party computation.

Damien Stehlé

The NTRU encryption scheme

05/06/2015 30/30

Underlying hardness assumptions.

- Is $\mathcal{P}oly(n)$ -Ideal-SVP really so hard?
- Are R-LWE and NTRU security equivalent to *Poly(n)*-Ideal-SVP?

What about practice?

- Which modifications to achieve good efficiency and security?
- What are the limits of the best known practical attacks?
- How to set parameters?

Design

- Can we design more advanded primitives, from NTRU?
- [Lopez-Alt, Tromer, Vaikuntanathan'12] Application to fully homomorphic encryption and multi-party computation.

Damien Stehlé

Underlying hardness assumptions.

- Is $\mathcal{P}oly(n)$ -Ideal-SVP really so hard?
- Are R-LWE and NTRU security equivalent to *Poly(n)*-Ideal-SVP?

What about practice?

- Which modifications to achieve good efficiency and security?
- What are the limits of the best known practical attacks?
- How to set parameters?

Design

- Can we design more advanded primitives, from NTRU?
- [Lopez-Alt, Tromer, Vaikuntanathan'12] Application to fully homomorphic encryption and multi-party computation.

Damien Stehlé