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Introduction

The NTRU encryption scheme

NTRUEncrypt: A public-key encryption scheme.
@ 1996: Proposed by Hoffstein, Pipher & Silverman.
@ 1997: Lattice attacks by Coppersmith & Shamir.
@ 1998: Revised by Hoffstein et al.
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The NTRU encryption scheme

NTRUEncrypt: A public-key encryption scheme.
@ 1996: Proposed by Hoffstein, Pipher & Silverman.
@ 1997: Lattice attacks by Coppersmith & Shamir.
@ 1998: Revised by Hoffstein et al.

In the last 20 years:
@ Several limited improvements to the lattice attacks.

@ Attacks for isolated sets of parameters.

@ But the design has proved very robust.
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Why studying NTRUEncrypt?

NTRUEncrypt is a practical scheme that seems secure.

@ Standardized: |IEEE P1363.

@ Commercialized: Security Innovation.

@ Super-fast:
e Encryption: a bit faster
o Decryption ~ 100 times faster_
o Asymptotically: O(\) versus O(\®), for security 2*

@ Interesting security features:
o No integer factoring nor discrete logs
e Seems to resist practical attacks
e Seems to resist quantum attacks
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Introduction

And NTRUSign?

NTRUSign is a digital signature counterpart of NTRUEncrypt.

@ 2001: First proposal, called NSS [HoPisio1].

@ 2001: Cryptanalysis, by Gentry, Jonsson, Stern and Szydlo.
@ 2001: First repair.

@ 2002: Re-broken, by Gentry and Szydlo.

@ Since then: many breaks and repairs.

@ Standardized and commercialized.

e Super-fast, before the Nguyen-Regev attack (2009).

@ It may be thwarted, but with big performance impact.

Fixed NTRUSign not competitive, e.g. compared to BLISS.
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Outline of the talk

1- Regular NTRUEncrypt

2- Attacks on NTRUEncrypt

3- The Ideal-SVP and Ring-LWE problems
4- A provably secure NTRUEncrypt
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Regular NTRUEncrypt

Polynomial Rings: Generalizing Z

Take ® € Z[x] monic of degree n.
R® = |ZIx]/(®),+, %]

Some interesting ®'s:
e d=x"-1 > R, d=x"+1 — R™.
@ For n a power of 2, the ring R™ is isomorphic to the ring of
integers of K = Q[e/™/"]:

K =~ Qx]/(x"+1)
Ok =~ Zx]/(x"+1).

= Rich algebraic structure (great for design and proofs).
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Polynomial Rings: Generalizing Z/qZ

Let g >2and Zg = Z/qZ.

R® = [Zq[x]/(¢),+, x].

@ Arithmetic in R;b costs O(nlog q).
o R is isomorphic to Ok /(q).

The key to decryption correctness

If f € R® is known to have coefficients in (—q/2, q/2), then

f mod g uniquely determines f.




Regular NTRUEncrypt

Description of NTRUEncrypt: Key Generation

Parameters: n, g a power of 2 (e.g. (n,q) = (503,256)).




Regular NTRUEncrypt

Description of NTRUEncrypt: Key Generation

Parameters: n, g a power of 2 (e.g. (n,q) = (503,256)).

@ Secret key sk: f,g € R~ with:

e f is invertible mod g and mod 3
o The coeffs of f and g are in {—1,0,1}




Regular NTRUEncrypt

Description of NTRUEncrypt: Key Generation

Parameters: n, g a power of 2 (e.g. (n,q) = (503,256)).

@ Secret key sk: f,g € R~ with:

e f is invertible mod g and mod 3
o The coeffs of f and g are in {—1,0,1}

@ Public key pk: h=g/f mod g




Regular NTRUEncrypt

Description of NTRUEncrypt: Key Generation

Parameters: n, g a power of 2 (e.g. (n,q) = (503,256)).

@ Secret key sk: f,g € R~ with:

e f is invertible mod g and mod 3
o The coeffs of f and g are in {—1,0,1}

@ Public key pk: h=g/f mod g

Given h € R, finding g,f € R~ small s.t. h = g/f [q] is hard.
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Regular NTRUEncrypt

Description of NTRUEncrypt: Encryption and Decryption

e sk: f,g € R~ small with f invertible mod g and mod 3
@ pk: h=g/f mod q

Encryption of M € R with coeffs in {0,1}:
e Sample s € R, with coeffs in {-1,0,1}
@ Send C :=3hs+ M mod g

Decryption of C € R;:
o f x C=23gs+ fMmod g
@ Smallness = equality holds over R~
e (f x C mod g) mod 3 = fM mod 3
@ Multiply by the inverse of ¥ mod 3

The mask 3hs hides the plaintext M in the ciphertext C.




Regular NTRUEncrypt

NTRU in practice

Quite a few implementation hacks:
@ How many 0'sin f,g,s — df,dg,ds.

o If f =1+ 3f for a small f/, then the final multiplication by
the inverse of f mod 3 is for free.

@ Replacing "3" by "x + 2" increases performance.

@ More hacks for NAEP
(variant meant to be IND-CCA in the Random Oracle Model).
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Attacks on NTRU

On the NTRUEncrypt key pair

The key-pair (h, (f, g)) of NTRUEncrypt satisfies:

el L] = Lrnmen ]

Secret key [ ; } is a short vector in the image of [ /17 2 }

We look at R-multiples of the columns, and try to find a short
combination...
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Attacks on NTRU

On the NTRUEncrypt key pair

Secret key [ f } is a short vector in the image of [ 10 }
g h q

Let's identify polynomials to vectors via their coefficients:

R® = 7"
Sicnfixl = (fo, .. fa1)t

Let L be the image of [ /11 2 ] - R?.

e L is a lattice of dimension 2n.
o (f,g)7T is a short vector in L.

o If they are chosen binary and sparse, then L contains
exceptionally short vectors.

= Lattice reduction gives a key recovery attack.
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On the NTRUEncrypt ciphertext

We have: C=3h-s+ M mod g, for some small unknown s.
We can write:

el e = e

@ The vector (—3s,M)T has small coefficients.

@ By mapping to the integers, we get an instance of the
Bounded Distance Decoding problem:
given a vector close to L, recover the closest lattice point.

@ Here L = [ }7 2 ] - R?, and input vector is given by C.

= Lattice reduction gives a message recovery attack.
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Attacks on NTRU

Chosen plaintext attack for ® = x" — 1

Parameters may be set to thwart (improved versions of) these
lattice reduction attacks.
But there are easy poly-time chosen plaintext attacks.

We have: C=3h-s+ M mod (g,x" — 1), for some small s.

o Note that C(1) =3h(1)-s(1)+ M(1) mod g [1-dim NTRU!]
o Find fi, g1 € Z of magnitude ~ ,/q s.t. h(1) = f;/g1 mod q.
@ Use 1-dim decryption, to recover M(1) mod 3.

The factorisation of ¢ is used to map the n-dimensional ring
to a 1-dimensional ring.




Outline of the talk

1- Regular NTRUEncrypt

2- Attacks on NTRUEncrypt

3- The ldeal-SVP and Ring-LWE problems
4- A provably secure NTRUEncrypt

From now on, we use

R = Z[x]/(x" + 1),

with n a power of 2.
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Poly(n)-Ideal-SVP

@ /| C R is an ideal if:
Va,bel,Nre R: a+b-rel.

@ We identify polynomials to vectors via their coefficients:

R — 7"
Yicn fix — (fo, .., fa1)t

@ An ideal / is mapped to an integer lattice.

Poly(n)-ldeal-SVP: Poly(n)-SVP restricted to ideal lattices. ]
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@ If I is an ideal lattice, we know a good approximation of the
norm of any shortest non-zero vector.

@ For & = x" + 1, we have a y/n-factor approximation.

@ Why? If s is a shortest non-zero vector of /, then

s-R C [ is a full-dimensional sublattice .
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Are these easier lattices?

First weakness.

@ If I is an ideal lattice, we know a good approximation of the
norm of any shortest non-zero vector.

@ For & = x" + 1, we have a y/n-factor approximation.

@ Why? If s is a shortest non-zero vector of /, then

s-R C [ is a full-dimensional sublattice .

Second weakness: [Cramer-Ducas-Peikert-Regev'15].

o If | is of the form | = s - R where s is quite short, then one
can recover s in sub-exponential time in n = dim /.

@ Quantumly, this can be done in polynomial time.
o Limited to very special ideal lattices.
Poly(n)-ldeal-SVP is believed to be as hard as Poly(n)-SVP.
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Does NTRU involve ideal lattices?

Nol

@ The NTRU lattice [ /11 2 ] -RZ%js...
a 2-dimensional module over R.

@ An ideal lattice is 1-dimensional over R.

@ It could be that ideal lattice problems are easy to solve,
but NTRU remains hard to break.
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The Ring-LWE Problem

@ The error distribution vg:
e n-dimensional Gaussian of standard deviation ag < g,
e rounded to Z",
e looked at as an element of R.
= Element of R with small coefficients.

@ The R-LWE distribution D,:

o Sample a <= U(Ry), 54 Vo, €4 1y,
o Return (a,as+e) € Ry x Ry.

(Simplified) R-LWE  [Lyubashevsky-Peikert-Regev'11]

Distinguish between D, and U(Rq X Rg).




R-LWE is hard [Lyubashevsky-Peikert-Regev'11]

Tell whether a given (a, b) is sampled from D, or U(Rq X Ry).

R-LWE is no easier than Poly(n)-ldeal-SVP

Take g = Poly(n) with ¢ = 1 mod 2n, and a = q/Poly(n).
Solving R-LWE, ,, with non-negligible advantage is computationally
infeasible, assuming the quantum hardness of Poly(n)-ldeal-SVP.




R-LWE is hard [Lyubashevsky-Peikert-Regev'11]

Tell whether a given (a, b) is sampled from D, or U(Rq X Ry).

R-LWE is no easier than Poly(n)-ldeal-SVP

Take g = Poly(n) with ¢ = 1 mod 2n, and a = q/Poly(n).
Solving R-LWE, ,, with non-negligible advantage is computationally
infeasible, assuming the quantum hardness of Poly(n)-ldeal-SVP.

@ The arithmetic restriction on g can be removed
[Langlois-Stehlé'14]

@ It could be that Poly(n)-ldeal-SVP is easy,
but R-LWE remains hard to solve.
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Securing NTRUEncrypt

Some intuition

NTRUEncrypt:
o pk: h=g/f € Ry with f, g small.
@ Enc: M — 3hs + M mod g, where s is small.
e IND-CPA: we would like (h,3hs) to be pseudo-random.
o It’s not! Divide RHS by h and check for smallness.

R-LWE hardness:

o (a,as + e) is pseudo-random when a <= U(R; ), s, € < va.

@ Let's change rings and replace “(h, hs)" by “(h, hs + e)"!




Securing NTRUEncrypt

The modified scheme

Parameters: n, g a power of 2, R=R™.

Key generation:
o sk: f,g € R with:

e f invertible mod g and 3
o Coeffs of f and g in {—1,0,1}

e pk: h=g/f mod g.

Encryption of M € R with coeffs in {0,1}:
e C:=3hs+ M mod g, with coeffs of s in {—1,0,1}.

Decryption of C € Ry:
e fxCmodqg = 3gs+fM  (over R)
o (f x Cmodg)mod3 = fM mod 3.
@ Multiply by the inverse of f mod 3.




Securing NTRUEncrypt

The modified scheme

Parameters: n a power of 2, g prime, R = R*.

Key generation:
o sk: f,g € R with:

e f invertible mod g and 2
o Coeffs of f and g of magnitude ~ /g

e pk: h=g/f mod g.

Encryption of M € R with coeffs in {0,1}:
@ C:=2(hs+e)+ Mmod g, with s, e <> v,.

Decryption of C € Ryg:
o fxCmodqg = 2(gs+fe)+fM  (over R)
e (f x Cmodg) mod2 = fM mod 2.
@ Multiply by the inverse of f mod 2.
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Is it that simple?

Pseudo-randomness of (h, hs + e)

I
Pseudo-randomness of (h,2(hs + €))

I
M is computationally hidden in (h,2(hs + e) + M)

I
IND-CPA security of the modified scheme
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Securing NTRUEncrypt

Is it that simple?

Pseudo-randomness of (h, hs + e)

I
Pseudo-randomness of (h,2(hs + €))

I
M is computationally hidden in (h,2(hs + e) + M)

I
IND-CPA security of the modified scheme

There is a catch!

Relying on R-LWE requires h uniform in R:,r.
But here h is the quotient of two small polynomials in R ...

See: perso.ens-lyon.fr/damien.stehle/NTRU.html



perso.ens-lyon.fr/damien.stehle/NTRU.html

Securing NTRUEncrypt

A provably secure variant of NTRUEncrypt

It is possible to modify NTRUEncrypt so that:
@ Encryption/decryption of \ bits still cost 5()\)

@ Any polynomial-time IND-CPA attack leads to a
polynomial-time quantum algorithm for Poly(n)-ldeal-SVP.
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Securing NTRUEncrypt

What's the interest of this result?

What we prove:

@ There is a variant of NTRUEncrypt that is secure under the
assumption that Poly(n)-ldeal-SVP is hard.

@ It's asymptotically as efficient as the original scheme.

It does not mean we should blindly replace NTRUEncrypt by this
variant: It is much less practical!

What it suggests:
@ The general design of NTRUEncrypt is sound.

@ It hints to cheap modifications towards more security

o Change the underlying ring.
e Replace hs by hs + e, to thwart trivial CPA attacks.
o Take less small coefficients for f, g, s, e.
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Outline of the talk

1- Regular NTRUEncrypt

2- The Ideal-SVP and R-LWE problems
3- A provably secure NTRUEncrypt

4- On NTRUSign
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proof under standard hardness assumptions.




Conclusion

Conclusion

@ NTRUEncrypt has resisted well against years of cryptanalytic
efforts.

@ The design is sound: a mild modification admits a security
proof under standard hardness assumptions.

@ The security of NTRU is related to lattices defined from
polynomial rings.

@ Deep connection with algebraic number theory.
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Conclusion

Open problems

Underlying hardness assumptions.

o Is Poly(n)-Ideal-SVP really so hard?

o Are R-LWE and NTRU security equivalent to
Poly(n)-ldeal-SVP?

What about practice?
@ Which modifications to achieve good efficiency and security?

@ What are the limits of the best known practical attacks?

@ How to set parameters?

Design
@ Can we design more advanded primitives, from NTRU?

@ [Lopez-Alt, Tromer, Vaikuntanathan'12] Application to fully
homomorphic encryption and multi-party computation.
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